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OBJECTIVES

§ Be able to give a rough estimate of the 

running time (in basic steps) of simple 

algorithms

§ Explain the concept of recursion

§ Give recursive algorithms for simple 

problems

§ Trace the operation of recursive calls

§ Be able to implement simple recursive 

algorithms in Java



OBJECTIVES

§ Be able to implement a binary search of a 

sorted array using recursion

Reading:

Savitch Chapter 11 plus extra material



Example Algorithm

§ Consider the common problem of finding 

(searching) a target value in a sorted array 

and returning some index at which it appears 

(or an indication if it does not appear at all)

§ The next slide provides pseudo-code for a 

straight-forward solution for the case with an 

array of integers

§ The algorithm will return the index at which the 

target value first appears or –1 if the target value 

does not appear in the array



Pseudo-code

Given an array a of integers and a target

integer value

let len = length(a)

i = 0

while ((i < len) and (a[i] < target))

i = i + 1

endwhile

answer = -1

if (i < len) then

if (a[i] == target) then

answer = i

endif

endif



Time Complexity of Algorithms

§ When designing software and choosing 

between several ideas for algorithms it is 

often useful to get a rough idea of how long 

the algorithm will take to run

§ Formal measures of this are called measures 

of time complexity of an algorithm

§ For example with our search algorithm we 

can say:



Time Complexity of Algorithms

§ To search in 1000 items it might take about 500 

iterations of the loop on average, or at worst 1000 

iterations

§ If we knew that it took 1 second to search through 

1000 items then we might guess it would take 

about 1000 seconds (about 17 minutes) to search 

through 1 million items

§ The time taken is roughly proportional to the size 

of the array to search

§ And we might be able to say that some other 

algorithm for doing the same job was significantly 

slower or quicker



Time Complexity of Algorithms

§ Measuring time complexity, estimating it and 

inventing quick algorithms is a big area of 

computer science research

§ We look at time complexity again later in this topic

§ Note that there are other reasons to choose 

between one algorithm and another in specific 

circumstances

§ For example, space complexity measures of how 

much memory an algorithm needs



Recursion

§ One way of inventing quick algorithms for 

some problems is to use a recursive

approach

§ “An object is recursive if it partially consists of 

or is defined in terms of itself.” - N. Wirth

§ An algorithm is a step-by-step set of rules to 

solve a problem; it must eventually terminate 

with a solution



Recursion

§ A recursive algorithm uses itself to solve 

one or more subcases

§ That is, in problem-solving using recursion, a 

solution is expressed in terms of itself

§ Recursive methods implement recursive 

algorithms

§ A recursive method is one whose definition 

includes a call to itself



Recursion as a Problem
Solving Tool

§ Solution to task T:

§ Solve task T1, which is identical in nature 

to task T, but smaller than T

§ Example task: 

§ Search a dictionary for a word



A Recursion Algorithm

If it is a one page dictionary then scan the 

page for the word

else

open dictionary near the middle

determine which half contains the word

if word is in first half then

search 1st half of dictionary for word

else

search 2nd half of dictionary for word

end if-else

end if-else

end algorithm



Recursive Definitions

§ A recursive definition contains 

§ A base part which contains the terminating 

condition to stop the recursion, and

§ A recursive part, where each successive call to 

itself must be a "smaller version of itself" so that a 

base case is eventually reached



Example 1

§ Definition of an integer constant (eg: 571) 

(decimal notation) is:

§ Any decimal digit, or 

§ Any decimal digit followed by an integer constant

§ Base: Any decimal digit (0 through 9)

§ Recursive: Any decimal digit followed by an 

integer constant

§ Recursive part reduces to the base part with 

repeated applications



Example 2

§ The Fibonacci numbers:

1,   1,   2,   3,   5,   8,   13,   21,   …

§ The first number is 1

§ The second number is 1

§ Each of the other numbers is the sum of 

preceding two numbers



Recursive Definition: Example 2

§ fib(1):  1 // base part

§ fib(2):  1

§ fib(n):  fib(n - 1)  +  fib(n - 2)

// recursive part for n > 2

§ Eg:

§ fib(3) = fib(2) + fib(1)



Recursive Methods

§ Methods designed to solve problems by 

calling themselves

§ Characteristics of a recursive solution:

§ Calls a method to solve a smaller problem of the 

same type

§ Size of problem diminishes in successive calls

§ A base case is solvable directly

§ That is, a recursive method must have a 

terminating condition – the recursive definition on 

the previous slide demonstrates this



Recursive Fibonacci Method

static int fib(int n)

//pre-condition: n >= 0

{

if (n <= 2) // base case

return 1;

else // recursive step

return fib(n - 1) + fib(n - 2);

} // end fib

// a call to method fib

int x = fib(5); 

// x will have the 5th Fibonacci number



Recursive Fibonacci Method

/ fib(2)

/ fib(3)    +

fib(4)   + \ fib(1)

/ \ fib(2)

fib(5)  +

\ / fib(2)

fib(3)    +

\ fib(1)

§ Invocations of method fib during calculation of 

the 5th Fibonacci number



Another Example

§ A recursive function for summing array 

elements

§ Task: Sum the first n elements of array A

§ sum (A, n) is:

§ A[0], if n = 1 // base case

§ A[n-1] + sum (A, n-1), if n > 1 // recursive step



Recursive Sum Method

static int sum(int[] A, int n)

//pre-condition: A.length >= n

{

if (n == 1) 

return  A[0]; //base case

return A[n-1] + sum(A, n-1);

}



Recursive Sum Method



RecursiveSumArray.java

// RecursiveSumArray.java

// Sums the elements of an array recursively

// Written by P S Dhillon

public class RecursiveSumArray {

public static void main( String[] args) {

int[] anArray = 

{98,76,65,105,45,1,199,15,88,100};

// determine sum of elements of the array

int arraySum;

arraySum = Sum(anArray, anArray.length);



RecursiveSumArray.java

System.out.println("The numbers are:");

for(int i = 0; i < anArray.length; i++)

System.out.println( anArray[i]);

System.out.println("The sum of array 

values is: " + arraySum);

System.out.println("End of program.");

} // end main



RecursiveSumArray.java

static int  Sum(int[] A, int n)

//pre-condition: A.length >= n

{

if (n == 1) 

return  A[0]; //base case

return A[n-1] + Sum(A, n-1); 

} // end Sum

}//end of class RecursiveSumArray



Designing A Recursive Solution

§ A common strategy is:

§ Given a problem of size n, split the problem 

into two sub-problems

§ A problem of size 1 which is directly solvable            

//the base case

§ A problem of size n - 1 that involves recursion



Designing A Recursive Solution

§ Example:

§ A method to multiply two integer numbers m

and n

§ Assume we know our addition table but not the 

multiplication table!

// m * n by repeated addition 

Multiply(m, n):

m, if n = 1 // base case

// recursive step

m + Multiply(m, n-1), if n > 1



Designing A Recursive Solution

//  Recursive multiply method

//  Performs multiplication using the + operator

static int Multiply(int m, int n)

// PRE: Assigned(m) && Assigned (n) && n > 0

// POST: returns  m * n

{

if (n == 1)

return  m; // base case

else // recursive step

return  m + Multiply (m, n - 1);

}



Designing A Recursive Solution

Example of a call to the previous method:

Scanner input = new Scanner(System.in);

System.out.print("Enter an integer: "); 

int x = input.nextInt();

System.out.print("Another integer: "); 

int y = input.nextInt();

System.out.println("\nThe product of " + 

x+" and "+y+" is: " + Multiply(x, y));

// Alternatively,

int result = Multiply(x,y);



Exercise for Topic 11

§ Give a recursive Java method for writing out 

any given String in reverse order



Recursion: Pros and Cons

§ A powerful problem solving tool - elegant and 

concise

§ Not necessarily more efficient than non-

recursive (looping = iterative) solution

§ Recursive routines can be slower and require 

more memory space due to overheads 

associated with function calls

§ Can be difficult to debug and may result in 

infinite recursion



Recursion: Pros and Cons

§ Infinite recursion is worse than infinite loop

§ It makes the computer “hang up” by using up all 

available memory (stack overflow) 

§ Note that there are general techniques for 

getting rid of recursion from an algorithm and 

making an iterative version (but the idea 

might have been recursive originally and it 

might be easier to understand the recursive 

version)



To Recurse or Not To Recurse?
That is the Question

§ Choose recursion when

§ The problem is stated recursively and the 

recursive solution appears less complex

§ That is, when it makes the code easier to 

understand and when efficiency is not important

§ Choose a non-recursive algorithm when

§ Both versions appear equally complex

§ Methods re-written without recursion typically 

have loops, so they are called iterative

methods



To Recurse or Not To Recurse?
That is the Question

§ Iterative methods generally run faster and use 

less memory space than recursive methods

§ If the use of a table is an option

§ Use table lookup (see next slide)



Table Lookup

§ Replaces a sequence of instructions with a 

simple array lookup

§ Out-performs both recursive and iterative 

algorithms

public static int Tfib(int n)

//  PRE: (n >= 0) && (n < 8)

//  POST: value returned is nth Fibonacci number

{

int[] fibTable = {1,1,2,3,5,8,13,21};

return fibTable[n];

}



Binary Search

§ Recall the common problem of finding a 

target value in a sorted array and returning 

some index at which it appears (or an 

indication if it does not appear at all)

§ Here is another (recursive) idea for a solution:

§ Start in the middle and (if the target value is not 

there) search either the first half or the second 

half depending on where the target would be



Binary Search
§ Here is pseudocode:

§ given array a of integers and target integer value

§ output binsearch( a, 0, length(a)-1, target)

§

§ binsearch(int array a, int first, int last, int target)

§ if (first>last) return –1

§ mid= (first+last)/2     (integer division)

§ if (a[mid]==target) return mid

§ if (a[mid]>target) 

§ return binsearch(a, first, mid-1, target)

§ else

§ return binsearch(a, mid+1, last, target)

§

§ The idea of binsearch is to find an index in the range first to last 

inclusive such that the target value appears there in the array. Here 

is one possible Java implementation ...



Binary Search
§ Here is pseudocode:

Given array a of integers and target value

output binsearch(a, 0, length(a)-1, target)

binsearch(int array a, int first, int last, 

int 

target)

if (first>last) return –1

mid = (first+last)/2 // integer division

if (a[mid] == target) return mid



Binary Search

if (a[mid] > target) 

return binsearch(a,first,mid-

1,target)

else

return 

binsearch(a,mid+1,last,target)



Binary Search

§ The idea of binsearch is to find an index in 

the range first to last inclusive such that 

the target value appears there in the array

§ Here is one possible Java implementation ...



Binary Search Class

/**

Class for searching an already sorted array of 

integers.

To search the sorted and completely filled array 

b, use the following: 

ArraySearcher bSearcher = new ArraySearcher(b);

int index = bSearcher.find(target);

where index will be given an index of where 

target is located

otherwise index will be set to -1 if target is 

not in the array

*/



Binary Search Class

public class ArraySearcher {

private int[] a;

// constructor

public ArraySearcher(int[] theArray)

/** Precondition: theArray is full and is sorted 

from lowest to highest */

{

a = theArray;

// a is now another name for theArray

} // end constructor ArraySearch



Binary Search Class

/** If target is in the array, returns the index of 

an occurrence of target.

Returns -1 if target is not in array*/

public int find(int target)

{

int len = a.length – 1;

return binarySearch(target,0,len);

}



Binary Search Class
/** Uses binary search to search for target in 

a[first] through a[last] inclusive

Returns the index of target if target is found.

Returns -1 if target is not found. */

private int binarySearch(int target, int 

first, int last)

{

int result = -1;

int mid;

if (first > last)

result = -1;

else {



Binary Search Class
mid = (first + last) / 2;

if (target == a[mid])

result = mid;

else if (target < a[mid])

result = binarySearch(target,first,

mid-1);

else   // (target > a[mid])

result = binarySearch(target,mid+1, 

last);

}

return result;

} // end binarySearch

} // end class ArraySearcher



Binary Search Demo

import java.util.*;

public class ArraySearcherDemo {

public static void main(String[] args) {

int [] a = new int[10];

System.out.println("Enter 10 integers in 

increasing order.");

System.out.println("One per line.");

Scanner keyboard=new Scanner(System.in);

for (int i = 0; i < 10; i++)

a[i] = keyboard.nextInt();

System.out.println();



Binary Search Demo
System.out.print("a["+i+"]="+a[i]+" ");

System.out.println();

System.out.println();

ArraySearcher finder = new 

ArraySearcher(a);

String ans;

do {

System.out.println("Enter a value to 

search for:");

int target = keyboard.nextInt();

int result = finder.find(target);



Binary Search Demo
if (result < 0)

System.out.println(target + " is 

not in the array.");

else

System.out.println(target + " is at 

index " + result);

System.out.println("Again?(yes/no)");

ans = keyboard.next();

}while (ans.equalsIgnoreCase("yes");

System.out.println("May you find what 

you're searching for.\n");

} // end main

} // end class ArraySearcherDemo



How Long Does It Take?

§ It is a bit harder to analyze the time 

complexity of binary search (than the simple 

iterative version given earlier in the topic)

§ Eg: to search through 1000 items we (in a 

couple of operations) break the problem down 

into a search through 500 items, then 250 

items, then 125 items, then 63, then 32, then 

16, then 8, then 4, then 2, then we must have 

found our target (or returned –1)

§ There are about 10 such steps



How Long Does It Take?

§ In general to search through N items, we take 

log2(N)

§ Recall 1000 is about 2 to the tenth

§ To search though 1 million items only takes 

twice as long!!

§ The individual steps may take a little longer 

(i.e. consist of several basic operations) but, 

for large N, this is outweighed



How Long Does It Take?

§ Eg: made up figures ...

§ So binary search is a much better searching 

algorithm

search times simple linear binary

1 item .001 sec .01 sec

10 items .01 sec .03 sec

1000 items 1 sec 0.1 sec

1 million items 17 minutes 0.2 sec



Algorithm Efficiency

§ We have seen that choosing the right 

algorithm for the job can sometimes make 

enormous differences to the efficiency of 

programs

§ Many important problems and possible 

algorithmic solutions have been studied for 

complexity and other efficiency issues

§ This is a big area of computer science 

research. This is important for several 

different types of situations



Algorithm Efficiency

§ Eg: getting a really big job done faster

§ Allocate school students to university places in 

less than one hour instead of several days, or 

§ Timetabling, or 

§ Many scientific and engineering applications, or

§ Internet searches, or 

§ Searching and sorting in large databases, etc.



Algorithm Efficiency

§ Eg: getting a reasonably large job done very 

fast

§ Graphics in virtual reality, or

§ Games, or

§ Finding words in files or emails on a PC, etc.



More On Efficiency

§ Note that you will sometimes see the big-oh 

notation to express the order of magnitude 

measure on how long an algorithm takes to 

solve a problem

§ Eg: saying that our simple linear search 

algorithm is O(N) means that its running time 

is proportional to N where N is the size of the 

data



More On Efficiency

§ You will see O(log2(N)) for binary search and 

O(N2) for some sorting algorithms, etc.

§ These give the implementer a rough idea of 

which algorithms are best for the problem

§ You may also see reports that certain 

problems are O(N) or O(N2) or O(N3) or 

O(log2N), etc.



More On Efficiency

§ This means that it has been mathematically 

proved that this is the best time complexity 

possible for any algorithm to solve that 

problem

§ It is impossible to find a better algorithm

§ Eg: to sort N items takes O(N log N) steps on 

average

§ No algorithm (even one not yet invented) can 

do better than that on average



More On Efficiency

§ Insertion sort takes O(N2) steps on average, 

quicksort takes O(N log N) steps on average. 

Quicksort is best possible (in a certain 

sense)...

sorting insertion quicksort

1 item .001 sec .010 sec

1000 items 17 minutes 100 sec

1 million items 32 years 2 days



Grouping Algorithms by Efficiency

§ Most algorithms execute in polynomial time, 

expressed as O(Na), constant a > 0 

§ Eg: O(N)   is linear time

§ O(N2)  is quadratic time 

§ O(N3)  is cubic time 

§ Algorithms whose running time is 

independent of problem size are known as 

constant time algorithms

§ Big-O  notation:  O(1)



Grouping Algorithms by Efficiency

§ Algorithms requiring time proportional to aN

(where a is a constant) are known as 

exponential algorithms

§ Execution times for exponential algorithms 

increase extremely fast with problem size 

§ Exponential algorithms are not suitable for 

any values of N except very small



Growth Rates for
Selected Algorithms

§ Average running times of some searching and 

sorting algorithms

Algorithm Efficiency -average case

Sequential search O(N)

Binary search O(log2N)

Bubble sort O(N2)

Selection sort O(N2)

Quick sort O(N log2N)



Calculating Running Time in
Big-O Notation

§ An algorithm without loops or recursion 

requires O(1) time

§ An algorithm with N iterations requires O(N) 

time

§ Eg:

for i = 1 to N  

statements without any more looping

endfor



Calculating Running Time in
Big-O Notation

§ An algorithm with one loop nested inside 

another has quadratic efficiency O(N 2)

§ Eg:

for i = 1 to N  

for j = 1 to N 

statements without more looping

endfor

endfor



END OF TOPIC 11


